

Soutenance de thèse

Approche Conjointe Acoustique et Thermique pour l'Optimisation des Laines Végétales du Bâtiment

Clément PIÉGAY

Rapporteurs Florence COLLET Olivier DAZEL Invité Luc JAOUEN Encadrants Emmanuel GOURDON Philippe GLÉ Etienne GOURLAY

Examinateurs Laurent ARNAUD Alain CELZARD Sandrine MARCEAU

Jeudi 14 novembre 2019

Contexte V

Verrous scientifiques

tat de l'art Démarche

De grands défis environnementaux et sanitaires

22 % des émissions de

Nuisances sonores 86% des français déclarent être gênés à leur domicile [Etude IFOP 2014]

11,5 milliards € / an [CNB & ADEME 2016]

Recommandation de l'OMS[OMS 2018]Subscription de l'OMSElignes directrices visant à protéger des effets nocifs du bruit

Recommandation du GIEC

[GIEC 2018]

Réduire drastiquement la demande en énergie du bâtiment

« l'utilisation de matériaux biosourcés joue un rôle important dans le stockage du carbone atmosphérique » [Fibra Innovation 2018]

« Les matériaux biosourcés sont, par définition, des matériaux issus de la biomasse d'origine végétale ou animale »

Jean Jouzel, ancien vice-président du GIEC

Introduction Résultats expérimentaux Modélisat

Contexte

Les réponses réglementaires

2018

concourt significativement au stockage de carbone atmosphérique et la à préservation des ressources naturelles...

Introduction Résultats expérimentaux Modélisation Procédure conjoi

Contexte Ver

Verrous scientifiques

tat de l'art Démarche

De la culture des plantes aux laines végétales

Des matériaux performants mais encore peu utilisés

Isolants fibreux de la famille des matériaux poreux

Structure interne constituée d'une partie solide

discontinue composée de fibres et possédant un réseau

de pores ouverts sur l'extérieur

Propriétés multifonctionnelles

Absorption acoustique

Ie [Glé 2013] [Arenas & Asdrubali 2018]

- Solation thermique [Collet 2004] [Volf *et al.* 2015]
- Caractère hygroscopique [Collet et al. 2008]

Durabilité [AQC 2016]

Identification des verrous scientifiques

Pertinence de l'optimisation conjointe des performances acoustiques et thermiques des laines végétales

Echelle des Laines

Répartition / Orientation

[Luu 2016]

Des fibres aux laines végétales : une grande variabilité

Conditions de culture

- [Pallesen 1996] [Tomsen *et al.* 2005] [Placet *et al.* 2017]
- Propriétés du sol
- Conditions météorologiques
- Période de semis et récolte
- Durée et type du rouissage
- Traitements mécaniques

Echelle des Fibres

- Composition chimique [Pereira et al. 2015] [Ramesh 2016]
- Morphologie / Dimensions [Charlet et al. 2010] [Placet et al. 2010]
 - Distribution tailles de fibres [Luu et al. 2017a]
 - Caractère hygroscopique [Collet 2004] [Hill et al. 2009]
 - Anisotropie [Lei et al. 2018]

Les propriétés acoustiques et thermiques des laines

Absorption acoustique

Correction acoustique : maîtriser le niveau sonore

d'un local en fonction de ses usages

Source Coefficient d'absorption acoustique : α

Hypothèses

- acoustique linéaire [Bruneau 1998]
- phase solide considérée comme rigide

 [Zwikker & Kosten 1949]
 [Doutres et al. 2009]

 phase fluide siège de dissipations par effets
 visco-inertiels et thermiques

Thermique

 3 modes de transferts de chaleur : conduction, convection et rayonnement
 Conductivité thermique : λ (W. m^{-1} . K^{-1})
 $\lambda_{eq} = \lambda_{cond} + \lambda_{conv} + \lambda_{rayt}$ [Bories et al. 2008]
 Hypothèse d'effets convectifs négligeables dans les isolants fibreux [Bankvall 1973] [Lux et al. 2006] [Tilioua et al. 2012]

Approche conjointe

- 🌑 Très peu de travaux dans la littérature
- Matériaux granulaires [Cerezo 2005]
- Matériaux fibreux [Rwawiire et al. 2017]
- Pas d'identification de paramètres ou d'approches de
 - modélisation conjointes

Introduction Résultats expérimentaux Modélisation

Contexte

e Verrous scientifiques

Etat de l'art Démarche

Modélisation micro-macro

Homogénéisation micro-macro

Techniques mathématiques s'appuyant sur la définition d'un milieu homogène équivalent au milieu hétérogène à l'échelle macroscopique. Ce milieu doit présenter le même comportement et répondre aux mêmes conditions aux limites.

Problématique

En s'appuyant sur les spécificités des laines végétales, peut-on développer une approche de modélisation micro-macro commune afin d'optimiser leurs performances acoustiques et thermiques en vue d'apporter des solutions pour la construction et la rénovation de bâtiments durables ? Introduction Résultats expérimentaux Modélisati

Contexte

te Verrous scientifiques

Etat de l'art Démarche

Démarche et objectifs

Présentation des matériaux de la thèse

Panneaux de laines végétales semi-rigides

- 22 matériaux monocouches thermoliés
- De 1 à 3 types de fibres végétales (chanvre-lin, chanvre-lincoton, bois-kénaf)
- 9 familles de laines
- Epaisseur *e* : 25 160 *mm*
- Masse volumique apparente :

 $\rho_a: 25.3 - 93.8 \, kg. \, m^{-3} \, (T = 25 \pm 0.8 \, ^{\circ}C/HR = 0 \pm 2\%)$ $\rho_a: 26.3 - 96.8 \, kg. \, m^{-3} \, (T = 25 \pm 0.8 \, ^{\circ}C/HR = 40 \pm 2\%)$

Echantillons

Echantillons cylindriques $\emptyset = 100 \pm 2 mm$

Types de fibres végétales

Fibres polymères

Polyester [8-20%] en masse, 30% pour la laine de coco

Présentation des conditions de mesures

Etablissement de la masse de référence

Séchage des échantillons en étuve à 50°C avec suivi de la masse

Caractérisations des paramètres micro et méso

Dispositif	Paramètre	HR o%	HR labo	HR 75%	Echantillon	Compression
MEB	Rf		Х			
Porosimètre différentiel pression	$ ho_s \phi$		Х			
Porosimètre comparaison volumes d'air	$ ho_s \phi$		Х			
Pycnomètre hélium	$ ho_s \phi$		Х			
Tube impédance	$lpha_\infty \Lambda \Lambda' \Xi_0$		Х			Х

Caractérisations des propriétés des laines

Dispositif	Propriété	HR 0%	HR labo	HR 75%	Echantillon	Compression
	α, ρ, Κ	Х	Х	Х		Х
Tube impédance	$ ho_{limp}$		Х			
	E,v		Х			
Conductivimètre Fil Chaud	λ	Х	Х			
Conductivimètre Hot Disk	λ	Х	Х	Х		Х
Conductivimètre Boîte Chaude	λ		Х			Х
DVS	W _m		Х			Х
Résistivimètre	σ		Х			Х

15/38

Matériaux Cadre mesures Paramètres microstructure Propriétés laines

Distributions de rayons de fibres

Hypothèses

Fibres et faisceaux considérés comme circulaires pour le relevé manuel des rayons de fibres

Type de laine	Réf.	Rf _{pol} (µm)	Rf _{veg} (µm)	Rf _{moy} (μm)	σ _{moy} (μm)
Chanvre	Ν	10.75	15.60	14.28	1.74
Kénaf	К	12.86	19.84	16.88	1.68
Сосо	I	11.52	49.79	15.63	1.61
Chanvre-lin-coton	Р	10.89	9.38	9.49	1.37

Résultats

Grande variabilité et hétérogénéité des

distributions de rayons de fibres végétales

Possibilité de modéliser par une distribution lognormale

Matériaux Cadre mesures Paramètres microstructure Propriétés laines

Résistivité et porosité ouverte des laines végétales

Le large panel d'absorption acoustique

Résultats

- Solution Large panel d'absorption pour $25 \le e \le 160 mm$ et
- $26 \le \rho_a \le 97 \ kg. \ m^{-3}$
- Bon niveau de performances en absorption pour moyennes et hautes fréquences
- Apparition possible de phénomènes de résonances

élastiques lorsque e augmente

Caractérisation de la conductivité thermique

Conditions de mesures du laboratoire :

$HR = 40 \pm 2\%$ et $T = 25 \pm 0.8^{\circ}C$

Résultats

Caractérisation possible de la diffusivité

Concordance entre les résultats pour 3 types de dispositifs reposant sur les régimes transitoires et permanents

Type de laine	Réf.	λ (W.m ⁻¹ .K ⁻¹)
Chanvre	В	0,054
Kénaf	К	0,053
Сосо	1	0,061
Ouate de cellulose	R	0,052
Chanvre-lin-coton	Р	0,051

Transferts thermiques par conduction et rayonnement

Solution Mesures de conductivité thermique avec variation de la masse volumique des échantillons ($HR = 40 \pm 2\%$ et $T = 25 \pm 0.8^{\circ}C$)

Approche HSP Motif générique Approche HAC Modèle deux tailles de fibre

Hypothèses de bases sur les laines végétales

Milieu à simple porosité

Phase fluide : air Fluide newtonien compressible de viscosité µ Dissipation acoustique Effets visqueux : frottement du fluide sur le squelette (ρ)

Effets thermiques : échanges de chaleur avec le squelette (K)

Coefficient d'absorption acoustique

 $\alpha = f(\rho, K, e)$

Phase solide : fibres Imperméables Squelette rigide

Conduction (λ_{cond}) Rayonnement (λ_{rayt}) Convection négligée Conductivité thermique équivalente $\lambda_{eq} = \lambda_{cond} + \lambda_{rayt}$

Biot [Biot 1956] Limp [Panneton 2007] Introduction Résultats expérimentaux Modélisation

Approche HSP Motif générique Approche HAC Modèle deux tailles de fibre

Homogénéisation des structures périodiques (HSP) 1/2

Hypothèses liées aux méthodes d'homogénéisation

Existence d'une volume élémentaire représentatif [Auriault 1980]

Séparation entre les échelles microscopiques et macroscopiques

Développements asymptotiques

 $f(\vec{x}, \vec{y}) = \sum_{i=0}^{\infty} \varepsilon^{i} f^{i}(\vec{x}, \vec{y})$ avec $f^{i}(\vec{x}, \vec{y}) \Omega$ – périodique en \vec{y}

Effets visco-inertiels

Pression uniforme au premier ordre dans les pores $\overrightarrow{V_y}p^0 = \overrightarrow{0} \rightarrow p^0(\overrightarrow{x}) = P$ Fluide localement incompressible $\overrightarrow{V_y}. \overrightarrow{v^0} = 0$ Equation de Navier-Stokes $\mu \Delta_y \overrightarrow{v^0} - \overrightarrow{V_y}p^1 - \overrightarrow{V_x}p^0 = j\omega \rho_0 \overrightarrow{v^0}$

Effets thermiques

Equation de la chaleur $\lambda \Delta_y T^0 - j\omega \rho_0 C_p T^0 = -j\omega p^0$

Approche HSP Motif générique Approche HAC Modèle deux tailles de fibre

Introduction Résultats expérimentaux Modélisation

Approche HSP Motif générique Approche HAC Modèle deux tailles de fibre

Elaboration du motif générique pour l'HAC

Hypothèses

Fibres = cylindre de rayon constant
 et de longueur infinie

 $\vec{G} = \vec{\nabla} \mathbf{P}$

 $\vec{G} = \vec{\nabla}T$

Flux perpendiculaire aux fibres

Acoustique :

Thermique :

Motif générique acoustique

Approche HSP Motif générique Approche HAC Modèle deux tailles de fibre

Modélisation HAC statique de la conductivité thermique

Equation de la chaleur en statique

 $\frac{\partial^2 T_i(r,\theta)}{\partial r^2} + \frac{1}{r} \frac{\partial T_i(r,\theta)}{\partial r} + \frac{1}{r^2} \frac{\partial^2 T_i(r,\theta)}{\partial \theta^2} = 0$ Avec *i* = phases solide, fluide ou milieu équivalent

Solution

$$T_i(r,\theta) = G(c1_i.r + \frac{1}{r}c2_i)\sin\theta$$

Avec $c1_i$ et $c2_i$ des constantes

Conditions aux limites

- Continuité de la température et du flux à l'interface fluide/solide et à l'interface inclusion/milieu homogène équivalent
- Hypothèse de consistance énergétique entre l'inclusion générique et le milieu homogène équivalent

Conductivité thermique de conduction

$$\lambda_{cond} = \lambda_s \left[\frac{1 + \frac{\phi}{\frac{1 - \phi}{2} + \frac{1}{\lambda_f / \lambda_s} - 1}}{\lambda_f / \lambda_s - 1} \right]$$
Pour $\lambda_s \neq \lambda_f$

$$\lambda_{cond} = \lambda_s \frac{(\lambda_s + \lambda_f) - \phi(\lambda_s - \lambda_f)}{(\lambda_s + \lambda_f) + \phi(\lambda_s - \lambda_f)}$$

[Piégay *et al.* - A cylindrical self-consistent modelling of vegetal wools thermal conductivity – Construction & Building Materials 2020]

Approche HSP Motif générique Approche HAC Modèle deux tailles de fibre

Modélisation du rayonnement

Introduction Résultats expérimentaux Modélisation

Approche HSP Motif générique Approche HAC Modèle deux tailles de fibre

HAC dynamique pour l'absorption acoustique 1/3

HAC dynamique pour l'absorption acoustique 2/3

Conditions aux limites

Vitesse nulle et variation nulle de température à **l'interface solide/fluide** en $r = \beta R$

•
$$-\frac{1}{\beta R} \frac{\partial f(\beta R)}{\partial r} = 0$$
 • $\xi(\beta R) = 0$
• $-\Delta f(\beta R) = 0$

Solution Vitesse à la frontière entre l'inclusion et le milieu homogène équivalent, en $r = R : \vec{V}(r) = \frac{1}{\Omega} \iiint_{\Omega_f} \vec{v}(r) d\Omega$ Note: $v_r(R) = V_r(R)$

• Contraintes à **la frontière de l'inclusion,** en $\mathbf{r} = \mathbf{R} : \oiint_{\partial \Omega} [-(p-P)\vec{l} + 2\mu \mathbf{D}(\vec{v}(r))] \cdot \vec{dS} = 0$

$$R - \frac{\partial h(R)}{\partial r} - \frac{\partial f(\Delta f(R))}{\partial r} = 0$$

Consistance énergétique

 $-\frac{1}{2}\Delta(f(R)) + \Pi = 0 \text{ (approche en flux) ou } \frac{1}{R}\frac{\partial^2 f(R)}{\partial^2 r} = 0 \text{ (approche en pression) et } \frac{\partial\xi(R)}{\partial r} = 0$ § 7 inconnues : $c_0, c_1, c_2, c_3, c_4, c_5$ et Π 7 équations

HAC dynamique pour l'absorption acoustique 3/3

3^{ème} approche

3^{ème} cas de figure possible pour les effets visco-inertiels en remplaçant la consistance énergétique par une condition de vorticité nulle :

 $\frac{\partial(\Delta(f(R)))}{\partial r} = 0$

Solutions

- S Approche en flux notée $\boldsymbol{v}:(\rho_v,K)$
-) Approche en pression notée $oldsymbol{p}$: $ig(
 ho_p, Kig)$

Approche alternative

Source Condition de vorticité nulle – notée \mathbf{z} : (ρ_z , K)

Approche HSP Motif générique Approche HAC Modèle deux tailles de fibres

Modèle à deux tailles de fibres

Mod èle (Rf_{veg} , Rf_{pol})						
Modèle acoustique	+	Modèle composite	[Gourdon & Sep	opi 2010]		
(Π_{veg}, K_{veg})		$\Pi_h = (1-\tau) \Pi_{veg}$	$+ \tau \Pi_{pol}$	au : ratio volumique des fibres polymères dans le milieu fibreux		
$ (\Pi_{pol}, K_{pol}) $		• $K_h = \left[\frac{\tau}{K_{pol}} + (1 - \frac{\tau}{K_{pol}})\right]$	$(\tau) \frac{F_d}{K_{veg}} \bigg]^{-1}$	avec couplage total $F_d = 1$		

[Piégay et al. - Acoustical model of vegetal wools including two types of fibers – Applied Acoustics 2018]

Solution avec modèle de Tarnow [Tarnow 1996a] [Tarnow 1996b] [Tarnow 1997]

Procédure conjointe Acoustique Thermique Optimisation

Procédure conjointe

Matériau fibreux

Détermination des performances acoustiques

Laine de lin (M)

•
$$Rf_{veg} = 11.83 \, \mu m / Rf_{pol} = 11.54 \, \mu m / \tau = 0.17$$

 $\phi = 98.3\%$

Approches HAC couplées avec le modèle à 2 tailles de fibres

Hypothèse squelette rigide à comportement limp

Détermination des performances thermiques

Laine de lin (M)

 $\lambda_s = 1.03 W. m^{-1}. K^{-1}$

 Approches HAC couplées avec les modèles de rayonnement
 Identification de l'optimum de transfert couplé conductionrayonnement

Procédure conjointe Acoustique Thermique Optimisation

Exemple d'optimisation

Résultats

Optimisation conjointe possible des performances acoustiques et thermiques pour :

$$Rf_{moy} = 9 \ \mu m$$

 $\phi = 0.978$
 $D_a = 34 \ kg. m^{-3}$

Performances acoustiques et thermiques optimisées

Gain du niveau d'absorption pour toutes les gammes de fréquences Gain de 10% de la conductivité thermique pour
 l'optimum de transfert couplé conduction-rayonnement

Conclusion

Conclusions

Caractérisation expérimentale

- Spécificité des distributions
- Eiens Rf , ϕ et σ
- Données paramètres micro / méso / macro (λ et α)

Modélisation HAC cylindrique

- Thermique : statique
- Acoustique : dynamique
- Couplage modèle composite : 2 tailles de fibres

Procédure d'approche conjointe

- 2 paramètres: φ et Rf_{moy}
- Optimisation possible des performances

Conclusion

Perspectives

Caractérisation expérimentale

- Capitalisation des données
- Orientation des fibres
- Diffusivité

Modélisation HAC cylindrique

- Distributions log-normales
- Evaluation influence autres harmoniques
- HAC cylindrique pour rayonnement thermique
- Limites analytiques basses et hautes fréquences de ρ et K

Procédure d'approche conjointe

- Validation pour autres matériaux fibreux
- Adaptation aux matériaux granulaires
- Potentiel élevé d'évolution

Soutenance de thèse

Approche Conjointe Acoustique et Thermique pour l'Optimisation des Laines Végétales du Bâtiment

Clément PIÉGAY

[Piégay et al. - Acoustical model of vegetal wools including two types of fibers – Applied Acoustics 2018] [Piégay et al. - A cylindrical self-consistent modelling of vegetal wools thermal conductivity – Construction & Building Materials 2020]